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Abstract

All neuroimaging packages can handle group analysis with t-tests or general linear modeling (GLM). How-
ever, they are quite hamstrung when there are multiple within-subject factors or when quantitative covariates
are involved in the presence of a within-subject factor. In addition, sphericity is typically assumed for the
variance-covariance structure when there are more than two levels in a within-subject factor. To overcome
such limitations in the traditional AN(C)OVA and GLM, we adopt a multivariate modeling (MVM) approach
to analyzing neuroimaging data at the group level with the following advantages: a) There is no limit on the
number of factors as long as sample sizes are deemed appropriate; b) Quantitative covariates can be analyzed
together with within-subject factors; c) When a within-subject factor is involved, three testing methodologies
are provided: traditional univariate testing (UVT) with sphericity assumption (UVT-UC) and with correction
when the assumption is violated (UVT-SC), and within-subject multivariate testing (MVT-WS); d) To correct
for sphericity violation at the voxel level, we propose a hybrid testing (HT) approach that achieves equal or
higher power via combining traditional sphericity correction methods (Greenhouse-Geisser and Huynh-Feldt)
with MVT-WS.

To validate the MVM methodology, we performed simulations to assess the controllability for false positives
and power achievement. A real FMRI dataset was analyzed to demonstrate the capability of the MVM approach.
The methodology has been implemented into an open source program 3dMVM in AFNI, and all the statistical
tests can be performed through symbolic coding with variable names instead of the tedious process of dummy
coding. Our data indicates that the severity of sphericity violation varies substantially across brain regions.
The differences among various modeling methodologies were addressed through direct comparisons between the
MVM approach and some of the GLM implementations in the field, and the following two issues were raised:
a) the improper formulation of test statistics in some univariate GLM implementations when a within-subject
factor is involved in a data structure with two or more factors, and b) the unjustified presumption of uniform
sphericity violation and the practice of estimating the variance-covariance structure through pooling across
brain regions.

Introduction

In the research endeavor towards addressing a specific hypothesis, conventional voxel-wise FMRI group
analysis is a vital step that allows the investigator to make a general statement at the population level. In
the typical methodology for such a leap of generalization from individual results to the group level one takes
the effect estimates from individual subject analysis and treats them as raw data in a general linear model
(GLM), with an underlying assumption that those effect estimates are either equally reliable across all subjects
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or with negligible within-subject variability relative to the between-subjects counterpart. The effect estimates
are regression coefficients (usually referred to as β values) or linear combinations. And the GLMs traditionally
include Student’s t-tests (i.e., paired, one- and two-sample versions), multiple regression, and AN(C)OVA.

The difficulty of modeling multi-way AN(C)OVA

For categorical variables, the dichotomy of between-subjects and within-subject factors is necessary because
the levels (or groups) of the former can be considered independent while this is generally not true for the latter.
Such differentiation necessitates accounting for the correlations among the levels of a within-subject factor, and
leads to the different treatments between two-sample and paired t tests as well as numerous types of AN(C)OVA
in terms of the number of explanatory variables and their types (categorical or quantitative, between- or
within-subject). The computations for Student’s t-tests and multiple regression are quite straightforward and
economical. In contrast, under the conventional ANOVA platform with rigid data structure (i.e., equal numbers
of subjects across groups and no missing data), one calculates the sum of squares (SS) for each effect term
through simplified formulas, and then obtains their respective ratios as F -statistics for significance testing. The
process is computationally efficient through the SS formulas, but each ANOVA formulation with different factor
types or with an extra factor leads to a different model framework because of the unique variance partitioning
involved. This can become very tedious especially when unique random effects have to be accounted for in the
case of within- or intra-subject (repeated- or longitudinal-measures) factors. For example, a two-way within-
subject ANOVA is more complicated than its one-way counterpart in formulating the F -statistics. Because of
this limitation, the ANOVA methodology adopted in AFNI (Cox, 1996) is currently constrained to up to four
fixed-effects factors through separate programs 3dANOVA, 3dANOVA2, 3dANOVA3, and GroupAna.

As an alternative, GLM is more flexible than the ANOVA platform at the cost of additional computa-
tion complexity. For example, GLM can accommodate unequal numbers of subjects across groups. However,
unlike the efficient SS computation under the ANOVA framework, each categorical variable under GLM is
dummy coded by multiple indicators. The complication of the coding process occurs when a within-subject
factor is involved, and the subjects are also required to be entered in the model through dummy coding, to
account for the random effects (intercepts). If more than one within-subject factor is formulated under GLM,
all the possible interactions between those within-subject factors and subjects except the one with the high-
est order are also required. It is because of this complication that the GLM implementations in both FSL
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and SPM (http://www.fil.ion.ucl.ac.uk/spm) can properly handle only
one within-subject factor, and statistical tests involving any between-subjects factors cannot be validly per-
formed in the same model because of the complexity in variance partitioning. Even if the software allows for
more than one within-subject factor (e.g., two- or three-way within-subject ANOVA), the results would be
incorrect as no differentiation in error partition is implemented. In addition, it is invalid under their GLM
implementations to test the effect at a specific factor level (e.g., male group, positive condition, or negative
condition of the female group) or a level combination whose weights do not sum to zero (e.g., sum of positive
and negative conditions) because the residuals are used in variance estimation. In contrast, GLM Flex (McLaren
et al., 2011) is a Matlab-based package that allows the handling of such cases without the inflated false positive
rate (FPR) for group comparisons that occurred with the previous alternative Flexible Factorial Design in
SPM and its comparable implementation within the General Linear Model setup in the group analysis scheme
FEAT of FSL. In addition, GLM Flex can model interactions among up to five fixed-effects variables that users
encode with dummy variables.

Sphericity violation

The traditional approach to handling a within-subject factor with more than two levels (e.g., one-way
within-subject ANOVA) is susceptible to the violation of a correlational assumption: sphericity or compound
symmetry. The compound symmetry assumption requires that the variances and covariances of the different
levels of the within-subject factor are homogeneous (identical), while the sphericity assumption, an extension
of the homogeneity of variance assumption in between-subjects ANOVA, states that all the variances of the
level differences are equal. Note that compound symmetry is also known as uniformity, intraclass correlation
model, or exchangeable correlation structure, and sphericity is sometimes referred to as circularity. Although
sphericity is the necessary and sufficient condition for the validity of the F -statistics in traditional within-subject
ANOVAs, compound symmetry is much easier to verify, and is a special case of the sphericity assumption, thus
is a sufficient but not necessary condition: If compound symmetry is satisfied, then sphericity is met. On the
other hand, sphericity almost means compound symmetry: it is possible, but rare, for data to violate compound
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symmetry even when sphericity is valid.
Data variability and correlations across conditions at the group level arise because of neurological basis

and intrinsic heterogeneity across subjects. For example, a subject who responds more strongly than the
group average to the positive condition may also have a higher response to the negative or neutral condition.
However, the correlation (proportion of shared or overlapping variance) between the positive and negative
conditions is not necessarily the same as between positive and neutral conditions, and between negative and
neutral conditions. The deviation from sphericity could lead to inflated significance. However, the traditional
correction through adjusting for the degrees of freedom has never been adopted in the neuroimaging packages.
Instead one proposed method was to estimate the correlations through pooling across all the “active” voxels
in the whole brain (Glaser and Friston, 2007), which has been adopted at both individual and group levels in
SPM. However, the presumption of a global correlation structure has not been systematically validated.

The difficulty of modeling quantitative covariates together with within-subject factors

Due to experimental constraints, samples (trials or subjects) are not always randomly manipulable. For
example, it is unrealistic to expect each subject to respond to all trials with the same reaction time (RT)
or to have the same average RT. The resulting variability can be modeled through amplitude correlation
(or parametric modulation) at the individual trial level, while across-subjects variations can be controlled or
accounted for in group analysis through the incorporation of relevant quantitative covariates (e.g., age, IQ, RT,
etc.). On other occasions, the association itself between the brain response and a quantitative covariate is of
interest, and necessitates considering it as an explanatory variable.

If a model contains only quantitative covariates or if the only categorical explanatory variables are between-
subjects factors, modeling quantitative covariates is relatively easy and straightforward through a univariate
regression or general linear model (GLM). On the other hand, the classical ANCOVA usually includes at least
one between-subjects factor as well as one or more quantitative covariates. It is of note that the historical
incarnation of ANCOVA emphasizes additivity and does not consider any interactions between factors and
quantitative covariates. This is the reason for the notion of homogeneity or parallelism of slopes, which is
totally unnecessary when the interactions are included. Furthermore, the concept of ANCOVA is basically
subsumed under GLM; if not for the legacy usage, the ANCOVA nomenclature can be fully abandoned to avoid
confusion. When a within-subject factor is involved, the situation becomes complicated under the univariate
modeling framework, and so far no neuroimaging software has the capability to do this except via the linear
mixed-effects modeling (LME) approach (Chen et al., 2013). Here we will explore the possibility of modeling a
quantitative covariate in the presence of a within-subject factor under the multivariate framework.

A motivational example

To motivate the exposition of the MVM approach, we present a real FMRI group study to demonstrate
a typical design that accounts for a confounding effect, varying age across subjects. Briefly, the experiment
involved one between-subjects factor, group (two levels: 21 children and 29 adults) and one within-subject factor
(two levels: congruent and incongruent conditions). Stimuli were large letters (either “H” or “S”) composed of
smaller letters (“H” or “S”). For half of the stimuli, the large letter and the component letters were congruent
(e.g., “H” composed of “H”s) and for half they were incongruent (e.g., “H” composed of “S”s)). Parameters for
the whole brain BOLD data on a 3.0 T scanner were: voxel size of 3.75 × 3.75 × 5.0 mm3, 24 contiguously
interleaved axial slices, and TR of 1250 ms (TE = 25 ms, FOV = 240 mm, flip angle = 35◦). Six runs of EPI
data were acquired for each subject, and each run lasted for 380 s with 304 brain volumes. The task followed
an event-related design with 96 trials in each run, three global runs interleaved with three local runs (order
counterbalanced across subjects). Subjects used a two-button box to identify the large letter during global runs
and the component letter during local runs. Each trials lasted 2500 ms: the stimulus was presented for 200
ms, followed by a fixation point for 2300 ms. Inter-trial intervals were jittered with a varying number of TRs,
allowing for a trial-by-trial analysis of how the subject’s BOLD response varied with changes in RT.

The EPI time series went through the following preprocessing steps: slice timing and head motion correction,
spatial normalization to a Talairach template (TT_N27) at a voxel size of 3.5×3.5×3.5 mm3, smoothing with
an isotropic FWHM of 6 mm, and scaling by the voxel-wise mean value. The scaling step during preprocessing
enables one to interpret each regression coefficient of interest as an approximate estimate of percent signal
change relative to the temporal mean. To capture the subtle BOLD response shape under a condition, each
trial was modeled with 10 basis (tent or piecewise linear spline) functions, each of which spanned one TR
(or 1.25 s). In addition, the subject’s RT at each trial was incorporated as a modulation variable. In other
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words, two effects per condition were estimated in the time series regression at the individual level: one reveals
the response curve associated with the average RT while the other shows the marginal effect of RT (response
amplitude change when RT increases by 1 s) at each time point subsequent to the stimulus. In addition, the
following confounding effects were included in the model for each subject: third-order Legendre polynomials
accounting for slow drifts, incorrect trials (misses), censored time points with extreme head motion, and the
six head motion parameters.

At the group level, it is the RT marginal effects that are of most interest, and the four explanatory variables
considered are: a) one between-subjects factor, Group (two levels: children and adults), b) two within-subject
factors: Condition (two levels: congruent and incongruent) and Component (10 time points where the profile
of RT marginal effects was estimated), and c) one quantitative covariate: age. This is seemingly a relatively
simple experimental design, but none of the FMRI packages except for the linear mixed-effects (LME) modeling
approach implemented into program 3dLME in AFNI can analyze this situation simply because of the difficulty
of modeling a quantitative covariate in the presence of a within-subject factor.

Preview

The layout of the paper is as follows. First, we review the modeling platforms for ANOVA and GLM,
and elaborate their limitations. The MVM platform is then introduced to overcome some of those limitations.
Second, simulation data were generated to reveal how the MVMmethodology performs in terms of controllability
for false positives and false negatives relative to alternative approaches, and the implementation of MVM
strategy in AFNI was applied to the experimental dataset. Finally, we discuss the limitations of MVM, compare
the strategy with other methodologies and its limitations, and raise some questions about the current practice
and implementations in group analysis. Our contributions here are fourfold: a) The MVM method allows for
any number of explanatory variables; b) Quantitative covariates can be modeled in the presence of within-
subject factors; c) The MVM platform provides a convenient venue for voxel-wise correction for sphericity
violation; d) With our open-source program 3dMVM in AFNI, main effects, interactions and post hoc tests can
be performed through symbolic labels, relieving the user of the burden from tedious dummy coding.

Throughout this article, regular italic letters (e.g., α) stand for scalars, boldfaced italic letters in lower (a)
and upper (X) cases for column vectors and matrices respectively, and words in monospaced font (3dMVM) for
program names. It is of note that the word multivariate is used here in the sense of treating the effect estimates
from the same subject or from the levels of a within-subject factor as the instantiations of simultaneous response
(or outcome) variables. This usage differs from the popular connotation in the FMRI field when the spatial
structure (multiple voxels) is modeled as the simultaneous response variables including multivariate pattern
analysis (Haxby, 2012), independent component analysis, and machine learning methods such as support vector
machine. Major acronyms used in the paper are listed in Appendix F.

MVM Platform

In contrast to the univariate GLM (Appendix A), the levels of a within-subject factor can be treated as
multiple simultaneous response variables under MVM. That is, each ANOVA design can be subsumed as a
special case of MVM. Furthermore, the extension also allows the handling of simultaneous variables that are of
different nature, unlike the scenario of a within-subject factor under the ANOVA scheme where the same type
of measurement (e.g., BOLD response in FMRI) is acquired under different conditions (e.g., positive, negative
and neutral emotions). For example, daily caloric intake, heart rate, body mass and height in behavioral study,
or correlation (or connectivity) measure under resting state, fractional anisotropy, gray-matter volume, and
task-related BOLD response from MRI data, can be formulated in a four-variate model.

A multivariate GLM includes multivariate regression and MAN(C)OVA as special cases, and can be ex-
pressed from a subject-wise perspective, βT

i = xT
i A+ δTi , or through the variable-wise pivot, bj = Xaj + dj ,

or in the following concise form,

Bn×m = Xn×q Aq×m +Dn×m. (1)

The n rows of the response matrix B = (βij)n×m = (βT
1 ,β

T
2 , ...,β

T
n )T = (b1, b2, ..., bm) represent the data from

the n subjects while the m columns correspond to the levels of within-subject factor(s). When multiple within-
subject factors occur, all their level combinations are flattened or unfolded from a multi-dimensional space
onto a one-dimensional row of B. For example, two within-subject factors with a and b levels respectively
are represented with an ab-variate system under MVM with m = ab in (1). Unlike UVM, the within-subject
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factors are coded as columns in B on the left-hand side of the model (1), and only between-subjects variables
such as subjects-grouping factors (e.g., sex, genotypes), subject-specific measures (e.g., age, IQ) and their
interactions are treated as explanatory variables on the right-hand side. The same linear model is applied to
all the m response variables, which share the same model (or design) matrix X = (xih) = (x1,x2, ...,xn)T .
Without loss of generality,X is assumed of full column-rank q. Each column of the regression coefficient matrix
A = (αhj) corresponds to a response variable, and each row is associated with an explanatory variable. Lastly,
the error matrix D = (δij)n×m = (δ1, δ2, ..., δn)T = (d1,d2, ...,dm) is assumed nm-dimensional Gaussian:
vec(D) ∼ N(0, In ⊗ Σ), where vec and ⊗ are column stacking and direct (or Kronecker) product operators
respectively. As in UVM, the assumptions for model (1) are linearity, normality and homogeneity of variance-
covariance structure (same Σ across all the between-subjects effects). A striking feature of the model (1) is that
Σ embodies the correlations among the m error terms as well as the m simultaneous variables and is estimated
from the data instead of being presumed of sphericity as in UVM.

The matrix representation of MVM (1) vis-à-vis the vector counterpart of GLM ((9) in Appendix A) is
reflected in most properties and testing statistics as well as the solutions for the model (1) (Appendix B), which
require

n ≥ m+ q. (2)

That is, the total number of measuring units (e.g., subjects) cannot be less than the total number of explanatory
and simultaneous variables. Similarly, a counterpart exists in partitioning the variability sources: the total sum
of squares and cross products (SSP) can be partitioned under the multivariate GLM into one SSP term for
regression and the other for the errors. The specific effect for a subject-grouping factor, quantitative covariate
or an interaction, corresponds to one or more columns in the model matrixX of (1), and is represented in one or
more rows of the regression coefficient matrix A. Also similar to UVM, significance testing for the hypothesis
about a specific effect can be formulated as SSPH against SSPE, with the former being the incremental or
marginal SSP between the reduced model under the hypothesis and the full model, and the latter being the
SSP for the errors. In general, one may perform general linear testing (GLT) as functions of the elements of A,

H0 : Lu×q Aq×m Rm×v = Cu×v, (3)

where the hypothesis matrix L, through premultiplying, specifies the weights among the rows of A that are
associated with groups or quantitative covariates, and the response transformation matrix R, through postmul-
tiplying, formulates the weighting among the columns of A that correspond to the m response variables. It is
assumed that L and R are full of row- and column-rank respectively, and u ≤ q, v ≤ m. The matrix L (or R)
plays a role of contrasting or weighted averaging among the groups of a between-subjects factor (or the levels
of a within-subject factor). Without loss of generality, the constant matrix C is usually set to 0.

The GLT formulation (3), sometimes referred to as double linear or bilinear hypothesis, provides a convenient
form for effect testing including any effect associated with a within-subject factor. For example, main effects
and interactions can be considered as special cases of GLTs with associated L and R. When R = 1m×1, the
hypothesis (3) solely focuses on between-subjects explanatory variables (columns in X) while effects among
the levels of the within-subject factors are averaged (or collapsed). In contrast, hypotheses regarding a within-
subject factor can be constructed via specifying the columns of R. Four MVT statistics can be constructed
(Appendix B) for (3) based on HE−1, a “ratio” between the SSPH matrix H for the hypothesis (3) against
the SSPE matrix E for the errors in the full model (1). Under the null hypothesis, HE−1 = I. Without loss
of generality, the effects discussed here are limited to main effect of an explanatory variable and interactions
among two or more explanatory variables. Other effects can be treated as main effects or interactions under
a sub-model, or are estimated through post hoc testing. For an effect not associated with any within-subject
factor, its testing can be performed by setting R = 1, and is essentially equivalent to the counterpart under the
univariate GLM. Complications occur in making inference in regard to an effect associated with one or more
within-subject factors, and there are three possible testing approaches: a) strict multivariate testing (MVT) in
MAN(C)OVA, b) within-subject multivariate testing (MVT-WS), and c) univariate testing (UVT) under the
MVM platform. Here we only discuss the latter two situations as they directly pertain to the univariate GLM.

Within-subject multivariate testing (MVT-WS)

Under the conventional MVM one can test the centroid in Rm at the group level, and such centroid testing
is composed of joint tests in the sense that the same hypothesis is tested across the m response variables
(Appendix C). However, when a within-subject factor with m levels is modeled under UVM, the hypothesis
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about the centroid is typically not of direct interest. Instead, the focus under MVM is usually on the main effect
of the factor (or the equality of the m levels) and the interactions between the factor and other explanatory
variables, and the testing strategy is typically referred to as within-subject multivariate testing (MVT-WS),
repeated-measures MA(C)OVA, or profile analysis. When only one within-subject factor with m levels is
involved, its associated R can be derived from the corresponding effect coding matrix, converting the original
m response variables into m− 1 unique deviations each of which represents the difference between a level and
the average across all levels. And the testing for the main effect now pertains to the (m − 1)-dimensional
centroid of those deviations. When there are k within-subject factors present (k > 1), the R for each effect
associated with one or more within-subject factors can be computed through the Kronecker product,

R = R(1) ⊗R(2) ⊗ · · · ⊗R(k), (4)

where R(i) takes the effect coding matrix if the ith within-subject factor is involved in the effect, otherwise
R(i) = 1ni , where ni is the number of levels for the ith within-subject factor (i = 1, 2, · · · , k) (Appendix C).

In summary, the MVM framework allows one to perform multivariate testing for the main effect of a within-
subject factor and its interactions with other variables. Unlike its counterpart under the univariate GLM, the
MVT-WS strategy estimates the variance-covariance matrix based on the data instead of presuming a specific
structure (e.g., sphericity). At the cost of degrees of freedom and with a higher demand for sample sizes as shown
in (2), it bypasses the stringent sphericity assumption made in the univariate GLM, and can accommodate any
possible variance-covariance structure. The choice of effect coding here is for interpretation convenience and
consistency, but it should be emphasized that infinite coding methods exist. If a coding method is chosen so
that the columns of R(i) are orthonormal, the transformed variance-covariance matrix is diagonal with equal
variance and thus spherical. However, different coding strategies in R(i) do not matter in terms of hypothesis
testing because of the invariance property.

Univariate testing (UVT) under the MVM platform

Even though the levels of a within-subject factor are treated as simultaneous response variables under the
MVM framework (1), UVT can still be performed under MVM thanks to the pivotal role played by the response
transformation matrix R in the hypothesis (3). Furthermore, if the dataset can also be analyzed under the
univariate GLM, the UVT statistics from MVM are exactly the same as they would be obtained through the
univariate approach. More importantly, MVM offers more UVT capability (e.g., unequal numbers of subjects
across groups, quantitative explanatory variable in the presence of within-subject factor, a unified and adaptive
platform) and provides the option of correction for sphericity violation. Specifically, for the effect of a between-
subjects factor (or quantitative covariate) or the interaction of two between-subjects variables, the formulation
of its F -statistic withH and E through L and R is done in the same way for MVT-WS, and R essentially plays
the role of averaging or collapsing among the levels of each within-subject factor (if present). In fact H and E
in this case correspond to the SS terms under the corresponding UVT, leading to the same F -statistic as in the
associated UVM. For an effect that involves at least one within-subject factor, the UVT F -statistic is different
from the situation with MVT-WS. Once the associated R in (4) is constructed, under the sphericity assumption
its SS term and the corresponding SS term for errors can be obtained (Fox et al., 2013) as tr(H(RTR)−1)
and tr(E(RTR)−1). Under alternative coding schemes that render an orthonormal transformation matrix
R, unique portions of variance among the transformed response variables can be captured, and the SS terms
simplify to tr(H) and tr(E).

The two kinds of explanatory variables are differentially coded in the MVM formulation (1) as follows.
The within-subject factors are flattened and mapped onto R1 as the columns in the data matrix B. On the
other hand, the between-subjects factors and quantitative covariates are coded as the columns in the model
matrix X. In doing so, each subject is associated with a row in B, X and residual matrix D; if there are
multiple estimates of an effect from a subject (e.g., due to multiple runs or sessions), those multiple values can
be essentially averaged before plugging into the model. Moreover, the rows and columns of A correspond to the
between- and within-subject effects respectively. It is of note that subjects are not explicitly represented among
the columns ofX in the MVM platform (1), unlike the univariate GLM (Appendix A) in which all the response
values form a column vector and subjects are coded as columns for the random effects in the model matrix. The
separate coding for the two variable types in MVM is also reflected in the roles of L and R in formulating each
hypothesis, and provides a simpler solution in pairing the SS terms for each effect than the univariate GLM.
It is this separate treatment that not only makes its extended modeling capabilities and advantages possible
but also leads to elegant implementations. Unlike the univariate GLM where the difficulty lies in the pairing
for the denominator of each F -statistic, the SSPE matrix E is fixed under MVM, and the corresponding UVT
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formulation hinges on the construction of the SSPH matrix H, which translates to specifying the response
transformation matrix R. As R in the formulation (4) is either the coding matrix for a within-subject factor
or the Kronecker product of multiple coding matrices, statistic formulation is much simpler than the pairing
process in the univariate GLM.

For example, the UVT for a factorial two-way within-subject ANOVA (Appendix C) demonstrates that the
flattened within-subject factors under MVM can be restored through constructing a proper R in the hypothesis
(3). The transformation provides a convenient hinge with which any number of within-subject factors is
multiplicatively flattened onto the left-hand side of an MVM system, and later allows for the restoration of
significance testing for main effects and interactions in the UVM style. This process in and of itself is of little
theoretical value; rather, the appealing property of the transformation lies in the computational or algorithmic
perspective. The implementation advantage is that the user interface only involves symbolic representations of
all variables and factor levels without any direct specification through dummy coding. In addition, the easy
pairing for the SS terms in the F -statistic of each effect relieves us of the manual pairing process in the univariate
GLM so that the number of within-subject factors is no longer a limitation in implementation. Furthermore,
the sphericity verification and the correction for its violation (Appendix D) become an intrinsic step for UVT
under MVM because they depend on the transformation matrix R and the SSPE matrix E.

Another appealing feature of MVM is in modeling quantitative covariates in the presence of a within-subject
factor. If such a covariate is at the subject level (i.e., between-subjects covariate) and does not vary across
the within-subject factor levels, treating the within-subject factor levels as simultaneous response variables in
MVM allows separate effect modeling of the covariate for each factor level. In other words, a within-subject
factor with m levels is estimated with m different slopes for the quantitative covariate, which cannot be handled
under UVM. The significance testing for the m slopes can be performed under UVT through the framework (3)
or under MVT-WS. It is of note that a quantitative covariate that varies across the within-subject factor levels
(i.e., within-subject covariate) cannot be modeled under MVM, but can be analyzed through LME (Chen et
al., 2013).

Implementation of MVM in AFNI

To recapitulate, the MVM framework includes AN(C)OVA and multiple regression as special cases. In
addition to the capability of MVT-WS, it lends us extended options when performing UVT compared to the
traditional approaches such as ANOVA and univariate GLM. For example, as each subject occupies one row
in the model formulation, the impact of unequal numbers of subjects across groups would be limited on the
degrees of freedom and the orthogonality of variance partitioning, but not on modeling capability. Subject-
specific quantitative explanatory variables can be easily incorporated in the model matrix X, even in the
presence of within-subject factors. The construction of effect testing through the hypothesis matrix L and the
response transformation matrix R in the formulation (3) allows for easy implementation with any number of
explanatory variables, and the user is relieved from having to deal with dummy coding. The Mauchly test
(Mauchly, 1940) for sphericity violation and the correction for the inflated F -tests can be readily established.

The MVM framework has been implemented in the AFNI program 3dMVM in the open source statistical
language R (R Core Team, 2013), using the MVM function aov.car() in the R package afex (Singmann, 2013). In
addition to the capability of modeling quantitative covariates at the subject (and the whole brain) level, 3dMVM
can also handle quantitative covariates at the voxel level (e.g., signal-to-fluctuation-noise ratio). Multiple
estimates of an effect from runs or sessions of each subject can be directly fed into 3dMVM as input, and are
averaged internally in the program. Post hoc t-tests are represented through symbolic coding based on R
package phia (De Rosario-Martinez, 2012), and they include pair-wise comparisons between two levels of a
factor, linear combinations (e.g., trend analysis) among multiple levels of a factor (weights not having to sum
to zero), and interactions among multiple factors that involve one or two levels of each factor. For example, in
a 3× 3× 3 ANOVA, all the 2× 2 and 2× 2× 2 interactions are essentially t-tests, which can be performed in
3dMVM. Parallel computing on multi-core systems can be invoked using R package snow (Tierney et al., 2013).
Effect coding was adopted for factors so that the intercept represents the overall average effect across all factor
levels and at the center of each quantitative covariate. Runtime varies from minutes to hours, depending on
data size, model complexity, and computing power.

The F -statistic for an effect that only involves between-subject variables (factors or quantitative covariates)
under MVM is uniquely determined because of the absence of sphericity issue and is the same as would be
obtained under UVM. In contrast, for any effect that is associated with at least one within-subject factor, 3dMVM
provides four versions of F -statistic: a) within-subject multivariate testing (MVT-WS), b) univariate testing
without sphericity correction (UVT-UC), c) univariate testing with sphericity correction (UVT-SC) through
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contingencies based on the Greenhouse-Geisser (Greenhouse and Geisser, 1959) and Huynh-Feldt (Huynh and
Feldt, 1976) corrections (Appendix D) (Girden, 1992),

UVT-SC =

{
GG,
HF,

if εHF < 0.75
if εHF ≥ 0.75

and, d) hybrid testing (HT) that extends the UVT-SC approach,

HT =


MVT-WS,

sphericity correction
{
GG,
HF,

if εHF < 0.55
if 0.55 ≤ εHF < 0.75
if εHF ≥ 0.75

(5)

The two correction methods above, UVT-SC and HT, adopted at the voxel level in 3dMVM, are similar to
statistical packages such as car in R (Fox et al., 2013), GLM in IBM SPSS Statistics (IBM Corp., 2012) and
REPEATED statement in PROC GLM of SAS (SAS Institute Inc., 2011) except that contingent schemes are
adopted here. In addition, instead of directly adjusting the degrees of freedom for sphericity correction, we
opt to keep the original degrees of freedom (constant across the brain) but change the F -value to match the
adjusted p-value, and this allows us to simplify the bookkeeping and visualization of the output.

The variables and input data are specified through the long format of data frame, a standard data structure
in R. In keeping with AFNI’s interface for coding convention, variable type declaration and general linear
hypothesis tests in 3dMVM are specified through variable names (e.g., condition) and symbolic labels (e.g., pos,
neg, and neu). This is considerably more appealing and less error-prone than manually dummy-coding the
categorical variables and model formulations. Neuroimaging data can be in AFNI or NIfTI format. The F -
statistics for individual explanatory variables and their interactions are automatically generated instead of the
user specifying regressors or assigning weights among the regressors as in FSL, SPM, and GLM Flex. The
Pillai-Bartlett trace is adopted as the default for MVT-WS although the other three multivariate statistics
are available as options. Two types of F -statistic formulations are available, partially sequential and marginal
(types II and III in the SAS terminology). The user can request for post hoc tests through symbolic coding,
and both the amplitude and t-statistic are provided as output. A scripting template for running 3dMVM is
demonstrated in Appendix E.

Applications and Results

Among the four approaches in testing an effect associated with a within-subject factor, MVT-WS is con-
sidered the most effective when the response variables are moderately correlated (e.g., between 0.4 and 0.7)
(Tabachnick and Fidell, 2013) with the following rationale: If the correlation is too low, the response variables
are loosely independent of each other and the variance-covariance structure is close to sphericity, thus the MVM
approach becomes inefficient and may lose power compared to the univariate methods; on the other hand, when
the correlation becomes high, the response variables can be considered the same variable, and MVM would be
costly in wasting high degrees of freedom. To effectively compare these testing methods in light of power and
controllability for false positive rate (FPR), simulations and applications are needed.

Simulations of group analysis with 3dMVM

Simulated data were generated with the following parameters in a typical FMRI group analysis: two groups
with 15 subjects in each, and their hemodynamic response (HDR) functions lasting for 12 s but with a 2 s
difference in peak location (Figure 1A). The HDRs are presumably estimated through 7 basis functions (e.g.,
TENT in AFNI) at the individual subject level to capture the shape differences. Each effect component βijk
estimated from the ith subject in the jth group corresponds to the response amplitude at the kth TR grid
(i = 1, 2, .., 15; j = 1, 2; k = 1, 2, .., 7), and each set of HDR estimates {βijk, k = 1, 2..., 7} is assumed to follow a
multivariate Gaussian distribution with a first order autoregressive AR(1) structure for the variance-covariance
matrix

Σ = σ2


1 ρ ρ2 ... ρ6

ρ 1 ρ ... ρ5

...
...

...
...

...
ρ6 ρ5 ρ4 ... 1

 ,
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Figure 1: Simulation data and results for the interaction Group:Component. (A) The presumed HDR functions
with a poststimulus undershoot for the two groups, with a difference of 2 s in shifted peak location, were
generated by a convolution program waver in AFNI, and sampled at TR = 2 s (shown with vertical dotted
lines). (B) Average sphericity measure ε across 5000 simulations for the two methods, GG and HF. Notice that
1/6 ≤ εGG ≤ εHF ≤ 1 (Appendix D). (C) Controllability for false positives in univariate testing (UVT) of
Group:Component without correction (UVT-UC) (red) is poor when the serial correlation becomes high. The
traditional sphericity correction (UVT-SC) (blue), within-subject multivariate testing (MVT-WS) (green), and
hybrid testing (HT) are well behaved. (D) UVT-SC (blue) pays the cost in power relative to UVT-UC (red).
Compared to UVT-SC (blue), MVT-WS (green) underperforms when ρ < 0.65 but excels when ρ ≥ 0.65. Even
though mostly worse than UVT-UC in power, HT (purple) achieves a detection rate that is approximately the
higher one between MVT-WS and UVT-SC. The curves in (B), (C) and (D) were fitted to simulated results
(plotting symbols) through loess smoothing with the second order of local polynomials.

where σ = 0.3, and 10 equally-spaced values ρ = 0.0, 0.1, ..., 0.9 were chosen to simulate the extent of sphericity
violation, ranging from none to high severity. Infinite correlation structures exist as long as the matrices are
symmetric positive semi-definite. The AR(1) choice was based on two considerations, the nature of the data
structure (HDR estimates at consecutive time points) and the full spectrum of sphericity violation that it
spans: The severity is a monotone increasing function of ρ (Figure 1B). 5,000 datasets were generated, each of
which was analyzed through 3dMVM with two explanatory variables, Group (2 levels) and Component (7 effect
estimates associated with the basis functions). This is essentially a two-way mixed-design factorial ANOVA
with one between- and one within-subject factor. FPR and power were assessed through counting the datasets
with the perspective F -statistic surpassing the threshold corresponding to the nominal significance level of 0.05.

As a reference, UVT-UC for the main effect (or coincidence) of between-subjects factor Group (whether
the two groups have different areas under the curve, H0 :

∑7
i=1 βi1 =

∑7
i=1 βi2 ), without involving sphericity

violation because of a scalar variance-covariance, shows an FPR very close to the nominal significance level
of 0.05 (not shown here). In contrast, UVT-UC for the interaction Group:Component (parallelism in profile
analysis, testing whether the HDR curves are commensurate or parallel with each other: H0 : β11 − β12 =
... = β71 − β72) has a reasonable control for FPR when ρ < 0.2 (no or mild sphericity violation), but becomes
increasingly out of control with higher ρ or more severe sphericity violation (Figure 1C). On the other hand,
MVT-WS, UVT-SC and HT perform well in FPR control (Figure 1C) throughout the whole range of ρ.

With regard to power, all four tests for the interaction effect shows a decreasing trend as ρ (and sphericity
violation severity) becomes high (Figure 1D), which is not unexpected because higher serial correlation leads to

9



more difficulty in untangling the components. UVT-SC achieves roughly the same power when ρ < 0.2, but its
power loss worsens with a large ρ. On the other hand, there is a large power disadvantage for MVT-WS even
when ρ = 0 compared to UVT-UC and UVT-SC. Its underperformance gradually deteriorates with a large ρ
but improves with ρ > 0.3. Around ρ = 0.65, MVT-WS overtakes UVT-SC, and its outperformance expands
further and finally exceeds UVT-UC around ρ = 0.87. As HT is conditionally defined in (5) based on the
sphericity measure εHF , its power performance is roughly the higher one between MVT-WS and UVT-SC.

The main effect of Component (or first-order interaction) indicates whether the average HDR curve between
the two groups is a flat line or constancy (H0 : β11 + β12 = ... = β71 + β72), a special case of hypothesis of
parallelism (the average HDR curve parallel to the null). Its simulated results show a similar pattern (not
illustrated here) to the second-order interaction effect, Group:Component, in both FPR control and power.

It is of note that our simulation results with an AR(1) correlation structure are not consistent with the
previous notion that MANOVA is most powerful when the correlations among the response variables are in
the range of (0.4, 0.7) (Tabachnick and Fidell, 2013). Instead MVT-WS underperforms compared to UVT-SC
when ρ < 0.65, but MVT-WS (and HT) overtakes UVT-SC in power when ρ ≥ 0.65. In other words, UVT-SC
is preferred when the sphericity violation is moderate (e.g., εHF < 0.65), but MVT-WS outperforms UVT-SC
when sphericity is severely violated (εHF ≥ 0.65).

Applying 3dMVM to real data

How do the testing approaches (UVT-UC, UVT-SC, MVT-WS, and HT) perform when applied to real data?
What does a real dataset reveal about the heterogeneity of the variance-covariance structure in the brain? Does
MVT-WS identify any significant regions that would not be detected under UVT? To address these questions,
we applied MVM to the data presented in the Introduction section with n = 50 (2 groups: 21 children and 29
adults), m = 20 (2 conditions with each having 10 estimates of RT marginal effect) and design matrix X of
q = 4 columns in (1): all ones (intercept or average effect across groups), effect coding for the two groups, the
average age effect between the two groups, and the interaction group:age (or group difference in age effect).
The age values were centered within each group so that the group effect can be interpreted as the difference
between the two groups at their respective average age. Runtime was about 90 min using 12 processors on a
Linux system (Fedora 14) with Intel R© Xeon R© X5650 at 2.67GHz.

We focused on the three-way interaction Group:Condition:Component that indicated whether the two groups
had the same or parallel profile of the RT marginal effect differences between the two conditions. Four F -
statistics for the interaction, UVT-UC, UVT-SC, MVT-WS, and HT, were obtained and then, due to different
degrees of freedom, converted to Z-values for direct comparisons. Their overall performance can be assessed
through histograms of pair-wise differences in Z-value (Figure 2) and a slice of significance map in a coronal
view (Figure 3A). In general, UVT-UC, at the cost of poor control for FPR, showed the highest power among
all four tests in almost all regions (A, D, F in Figure 2). Some exceptions exist; for example, MVT-WS rendered
significant results at regions where other tests failed, as shown at the region (crosshair) in Figure 3A and Voxel
1 in Figure 3(B and C). The outperformance of MVT-WS is also seen in the voxel count in Figure 2(D and
E). With FPR well-controlled, it is not unexpected to see that UVT-SC achieved lower power than UVT-UC
(Figure 2F; Voxels 2-5 in B and C of Figure 3). On the other hand, UVT-SC achieved higher power than
MVT-WS at some regions (Figure 2E, Voxels 3-5 in B and C of Figure 3) while at other regions MVT-WS
outperformed (Figure 2E; Voxels 1 and 2 in Figure 3 (B and C)). HT largely takes its statistical value from
either UVT-SC or MVT-WS based on the severity of sphericity violation in the contingency table (5). However,
as indicated at Voxels 2, 3, and 5 in Figure 2(B and C) and in Figure 3(B and C), the significance level of
HT is not always the higher value between the two. Even though the simulations indicated that HT had equal
or higher power than UVT-SC and MVT (Figure 1), it does not necessarily render equal or higher significance
when applied to each specific dataset due to the nature of randomness. The voxels in Figure 3 were selected
from clusters, not isolated voxels, that survived a liberal voxel-level significance of 0.05. In addition to statistical
significance, the spatial extent and the profile patterns of the RT marginal effects were consistent across voxels
within each cluster (not shown here) as well as across regions (Figure 3C), providing additional evidence for
the existence of the effects under investigation. One observation of interest is that, when the sample size is
proper, MVT and UVT usually converge; however, discrepancies of significance inference between UVT and
MVT typically occur when the sphericity violation is severe (e.g., εHF < 0.55) as shown at Voxels 1, 3, and 5.
This revelation underscores the importance of combining both UVT and MVT in data analysis.

One popular practice in correcting for sphericity violation is to assume a uniform correlation structure
within and across the brain regions, and thus the structure could be estimated by pooling all the voxels among
those regions that reach some level of significance (Glaser and Friston, 2007). However, to our knowledge
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Figure 2: Histograms of Z-value differences at 2383 voxels (resolution: 3.5 × 3.5 × 3.5 mm3) that reached
the voxel-wise significance level of 0.05 for HT. The Z -values were converted from the original F -values with
different degrees of freedom. Six pairwise comparisons are shown: (A) HT and UVT-UC, (B) HT and UVT-SC,
(C) HT and MVT-WS, (D) MVT-WS and UVT-UC, (E) MVT-WS and UVT-SC, (F) UVT-UC and UVT-
SC. Cell width is 0.1 in Z-value difference. The spikes in (B) and (C), with a height of 958 and 1437 voxels
respectively, were chopped off for a comparable representation among the histograms, and they indicate that
little difference existed between the two tests at most voxels.
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(A) Coronal view of interaction effect Group:Condition:Component

HT UVT-UC UVT-SC MVT-WS

(B) Sphericity scenarios at six representative voxels
Voxel Sphericity UVT-UC UVT-SC MVT-WS HT

No. coordinates Mauchly p-value εGG εHF p-value p-value p-value equal to
1 -2 36 27 0 0.32 0.35 0.28 0.31 0.00021 MVT-WS
2 -33 -5 42 0 0.42 0.46 3.8× 10−6 8.4× 10−4 1.6× 10−4 MVT-WS
3 -50 -16 24 0 0.45 0.50 1.6× 10−4 0.0041 0.14 MVT-WS
4 -5 -20 23 8.7× 10−6 0.68 0.79 1.8× 10−5 0.0001 0.008 UVT-SC
5 40 36 55 0 0.25 0.26 0.0036 0.057 0.40 MVT-WS
6 -36 -16 7 0 0.53 0.60 1.8× 10−5 5.3× 10−4 0.0019 UVT-SC

(C) Profiles of RT marginal effect at the six voxels in table (B)
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Figure 3: (A) Four tests are illustrated on a coronal slice (Z=27) with colored voxels at 0.05 level. Neither
multiple testing correction nor cluster-level thresholding was applied. Voxel 1 in (B) and (C) is at the crosshair
in (A). The left brain is shown on the right. (B) The Mauchly test, sphericity measures (εGG and εHF ) and the
four testing statistics are shown at six voxels from the three-way interaction. The extent of sphericity violation
is broad among the six voxels. (C) RT marginal effects in condition comparisons (first two columns) and in the
three-way interaction are plotted at the six voxels in (B) with each profile spanning over 11 TRs or 13.75 s. In
addition to the statistical significance presented in (B), the RT marginal effect profiles of each group at both
conditions and the three-way interactions provided strong evidence for the existence of the associated effects at
these voxels.
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Figure 4: Spatial inhomogeneity of εHF values is illustrated through a histogram (A), an axial (X=-2) (B),
a sagittal (Y=36) (C) and a coronal (Z=27) view (D) at 5192 voxels (resolution: 3.5 × 3.5 × 3.5 mm3) that
reached the voxel-wise significance level of 0.05 for UVT-UC. Cell width in (A) is 0.01. The distribution of εGG

(not shown here) is similar. Notice that 1/9 ≤ εGG ≤ εHF ≤ 1 (Appendix D), mean(εGG) = 0.439, sd(εGG)
= 0.105, mean(εHF ) = 0.488, sd(εHF ) = 0.130. Coronal view (D) and the colored clusters are the same as
in Figure 3A. Red, green and blue in (B) and (C) correspond to no, mild, and severe violation of sphericity
assumption. A substantial amount of variability in εHF exists within and across brain regions; that is, the
severity of sphericity violation is spatially heterogeneous.

the uniformity assumption has not been empirically tested. With MVM and our empirical data, we found
substantially broad variations in the violation severity from the perfect sphericity (Figure 3B; Figure 4) both
within and across regions, raising questions about the brain-wide pooling strategy. Per a reviewer’s request, we
performed direct comparisons of the MVM approach to the modeling strategies adopted in SPM and GLM Flex.
To do so, we had to reduce the original model by removing two explanatory variables, quantitative covariate RT
and within-subject factor Condition, through averaging the two conditions. In such a mixed two-way ANOVA
with one between-subjects factor Group and one within-subject factor Component, we compared the three
omnibus tests: main effects for Group and Component, and their interaction. As shown in Figure 5A, 3dMVM
and GLM Flex provided identical Group effect except for differences ascribable to numerical roundoff errors.
However, SPM’s Flexible Factorial Design returned largely inflated statistical significance values resulting
from the incorrect implementation of the F -statistic for the between-subjects effect (McLaren et al., 2011) with
a smaller denominator (MSS(A) instead of MSBS(A)) as well as a larger number of degrees of freedom (432
instead of 48) (the between-subjects factor A in (7) of Appendix A). On the other hand, the three programs
rendered similar interaction effect Group:Component (Figure 5B) at a liberal voxel-wise significance level of
0.05. However, closer comparisons show that the effect significance differed between MVM and the other two
programs. This is the result of the differing assumptions about the spatial distribution of the variance-covariance
structure. The amount and direction of bias were strongly correlated with the extent of sphericity violation
relative to the average as demonstrated in the scatterplot of Figure 5B.

Discussion

Group analysis is an essential part of neuroimaging investigations to make generalizations. As a routine
step, most studies can be analyzed through Student’s t-tests or simple ANOVAs. The majority of researchers
are trained in the conventional ANOVA-style, and are thus familiar with such procedures. In some situations,
it might be more straightforward to adopt a piecemeal strategy and parse the individual Student’s t-tests than
to utilize one full model. Under other circumstances, Student’s t-tests and simple ANOVAs no longer meet
the needs as they did in the early days of neuroimaging, and sophisticated modeling strategies are needed.
Nowadays a longitudinal study scenario would not be farfetched with, for example, seven explanatory variables,
including four between-subjects factors: sex (male and female), disease (patient and control), genotypes (two
homo- and one hetero-zygote), multiple sites/scanners; two within-subject factors: condition (positive, negative
and neutral stimuli), clarity (clear and vague); and one quantitative covariate: age. Even if this scenario could
be analyzed through a piecemeal fashion (without modeling the age effect), one would be inundated by the
sheer number (∼ 200) of individual t-tests.

There are some reasons why it is advantageous to adopt the traditional approach of one integrative model
that incorporates all the explanatory variables. When numerous explanatory variables are involved, the omnibus
F -test for an intersection (or global null) hypothesis regarding a main or interaction effect offers the safeguard
of weak family-wise error (FWE) rate control, a minimum requirement of correction for multiple comparisons
relative to the strong FWE correction for the post hoc tests. In addition, the omnibus F -statistic provides a
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3dMVM vs GLM Flex

Figure 5: Performance comparisons on a two-way ANOVA with one between-subjects (Group) and one within-
subject (Component) factor among three modeling strategies: 3dMVM in AFNI, Flexible Factorial Design
in SPM (SPM8 v5236), and Matlab package GLM Flex. The original F -statistic values with different degrees
of freedom were converted to Z-values for direct comparisons. The color-coded Z-value maps are thresholded
at the voxel-wise significance level of 0.05 and shown at the same focus point of (X,Y, Z) = (−2, 36, 27) as
in Figure 3A and Figure 4. (A) 3dMVM and GLM Flex rendered virtually identical group effect while Flexible
Factorial Design dramatically inflated the significance due to the incorrect formulation of F -statistic for the
between-subjects effect: both the denominator (MSS(A) versus MSBS(A) for factor A in ( 7) of Appendix
A) and the associated degrees of freedom (432 versus 48) were inpropriate. The inflation is also demonstrated
in the scatterplot of the Z-values in the brain on the right-hand side. (B) The three programs gave similar
interaction effect, but the subtle differences lie in the biases of Flexible Factorial Design and GLM Flex on
the significance. UVT-SC was adopted here in 3dMVM for comparisons. As shown in the scatterplot of Z-value
differences, the biases at each voxel are positively correlated with the deviation of sphericity violation from the
average among the selected voxels. The slight differences between Flexible Factorial Design and GLM Flex
were likely due to different selected voxels for the pooling process of the correlation structure.
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search guide for particular comparisons without exhaustively enumerating all possible combinations. Another
benefit is that, compared to the piecemeal tests involving one group, merging all the data into one comprehensive
model may increase statistical power by enlarging or borrowing sample sizes across groups. Lastly, due to
sampling constraints or other reasons, it is sometimes desirable to control or account for confounding effects
such as age and IQ, and such quantitative covariates are easier and more economical (with lower cost in
degrees of freedom) to handle in a full model than the piecemeal fashion. Traditional ANOVAs, as adopted in
3dANOVA, 3dANOVA2, 3dANOVA3 and GroupAna in AFNI, are performed through frugal computations of SS terms
for the numerator and denominator of each F formulation. Their applications are limited from the following
perspectives: A) Each specific model is associated with a unique set of F -ratios based on the numbers of
factors and factor types (between- or within-subject), which is a considerable deterrent when extending the
modeling scope; B) Quantitative covariates cannot be incorporated; C ) A rigid data structure requires an
equal number of subjects across groups; D) Sphericity testing and correction for its violation are generally not
available under the SS computation schemes. In contrast, the univariate GLM approach offers a more versatile
and inclusive platform for a full model strategy. In addition to being capable of seamlessly incorporating
quantitative covariates, GLM has the potential to analyze cases with a large number of explanatory variables.
This modeling strategy has been implemented in programs such as 3dRegAna in AFNI, GLM of FEAT in FSL, Full
and Flexible Factorial Design in SPM, and the stand-alone program GLM Flex. However, their applications
are hindered by three limitations. The pairing of numerator and denominator in each F -statistic is tedious, and
depends on the variable type (between- or within-subject factor, or quantitative covariate) as well as on the
number of explanatory variables. This UVM limitation prevents the strategy from extending to an arbitrary
number of variables. Furthermore, there is no direct correction available for sphericity violation under the
univariate GLM. Lastly, it is difficult to model a quantitative covariate with a within-subject factor.

In the literature, modeling a quantitative covariate is usually restricted to the standard multiple regression
(in the absence of both within- and between-subjects factors) or ANCOVA with between-subjects factors but
no within-subject factors. It is rare to see discussions about modeling a quantitative variable in the presence of
one or more within-subject factors. One suggestion (Rutherford, 2001) is that one can break down, for example,
a mixed two-way factorial ANCOVA (one between- and one within-subject factor plus a quantitative covariate)
into two separate analyses: one ANCOVA with the between-subject factor plus the covariate, and one within-
subject ANOVA. For the latter, as the quantitative covariate would not have any impact on the comparisons
among the levels of the within-subject factor, it would be unnecessary to consider modeling such a quantitative
covariate when testing the within-subject factor effects. However, the inclusion of a quantitative explanatory
variable is not just important for improving a specific effect estimate, but also for increasing the statistical power
by accounting for knowable source of variability. On the other hand, if the correlation between the levels and the
quantitative covariate is not a nuisance but a goal, a workaround solution proposed was to reduce the within-
subject factor into multiple pairwise comparisons among the levels, and then run traditional ANCOVAs on
each comparison. However, such practice presumes that the correlation between each level and the quantitative
covariate is constant across all levels, a presumption that may not necessarily hold unless tested, unlike in
MVM where each level is treated as a response variable with a separate covariate effect. Lastly, the piecemeal
approach is suboptimal and may become unbearably cumbersome as the number of variables increases.

Due to some flaws in software design or implementation, misuses or outright model misspecification is
often seen even in seemingly simple analyses (McLaren et al., 2011). For example, effect estimates from
multiple runs or sessions from each subject are easily and incorrectly entered as independent samples in t-tests;
two-sample t-tests and between-subjects ANOVAs (e.g., “full factorial design”) are mistakenly used to handle
situations involving a within-subject factor; a mixed ANOVA with one between- and one within-subject factor
implemented in univariate GLM (e.g., “flexible factorial design”) is inappropriately adopted to make inferences
about the effect of the between-subjects factor or the effect at a specific factor level; improper analysis for a
two- or three-way within-subject ANOVA is performed in GLM (e.g., “flexible factorial design”) where no error
differentiation is considered for the denominator of each F -statistic. In contrast, an interface that requires the
user to explicitly specify the structural model for the data in terms of the explanatory variables (in symbolic
form) has the potential to force clarity into the statistical analysis choice.

Overview of the MVM methodology

Multivariate GLM, as a progenitor of the theory of algebraic invariants, has been available for over 50
years, but its wide applications are generally discouraged (Tabachnick and Fidell, 2013). A few reasons have
contributed to its unpopularity in general. Compared to UVM, MVM’s theory is less tractable, and is generally
not covered in basic statistics education. In addition, most multivariate models can also be formulated under the
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univariate platform, but the multivariate approach is generally considered not as powerful as the latter. Also,
the various testing statistics under MVM are not as well-behaved or as simple as the popular t- and F -statistics.
Its high computational cost is another hindering factor cramping its wide applicability. Nevertheless, the MVM
provides two irreplaceable advantages, one in implementing the traditional UVT methodology, and the other
in offering MVT as an auxiliary test. Its role as a scaffold allows for any number of within-subject factors
under UVT and further augments the UVT by the capability to correct for sphericity violation. Its adaptive
flexibility in capturing the correlations among the levels of a within-subject factor under MVT complements
UVT. Specifically, the deviations among the levels of a within-subject factor are traditionally entered into UVM
as random effects, leading to a parsimonious assumption for the covariance structure. In contrast, in MVM
those deviations are treated as simultaneous response variables, allowing for estimating the correlations.

We have implemented the MVM methodology as an alternative to the univariate GLM in the program
3dMVM in AFNI. A flattening process transforms the levels for each within-subject factor as well as the level
combinations across multiple within-subject factors into simultaneous response variables, and separates the
within-subject factors from the between-subjects variables on the two sides of the MVM system. The platform
renders the same results as the univariate GLM when no within-subject factors are involved in the hypothesis.
On the other hand, when an omnibus hypothesis is associated with one or more within-subject factors, two
types of testing, MVT-WS and UVT, can be performed through a folding process. The former is constructed
through proper specifications of L, R, and C in general linear hypothesis (3) in which the variance-covariance
structure Σ is estimated instead of being assumed spherical. Similar to the univariate GLM, the impact
of unequal numbers of subjects across groups would be limited by the degrees of freedom and the broken
orthogonality, not by modeling capability. It is the separation between within- and between-subjects variables
and the construction of the response transformation matrix R in (3) that allow for easy implementation with
any number of explanatory variables, and the user is relieved of directly dealing with dummy coding. In
addition, the Mauchly test for sphericity violation and the correction for over-liberal F -tests in UVT are
readily incorporated. Among the four F -tests (UVT-UC, UVT-SC, HT, and MVT-WS) implemented in 3dMVM
for each omnibus hypothesis that involves a within-subject factor, the latter three tests possess well-behaved
control of FPR. Consistent with previous studies (O’brien and Kaiser, 1985; Maxwell and Delaney, 2004), our
simulations and analysis results with real data indicated that there is no single preferable testing method that
uniformly achieves the highest power. It is the combination of UVT and MVT that not only expands the
modeling capabilities but also benefits in combined detection power (Barcikowski and Robey, 1984; Looney
and Stanley, 1989). Their complementary role is evidenced by the situations when one test but not the other
reveals significance, which usually occurs when sphericity is severely violated. For example, Voxel 1 in Figure 3
illustrates the importance of significance detection through MVT-WS that would not be revealed through the
univariate GLM or UVT.

It is more often the rule than the exception that the variance-covariance matrix Σ for a within-subject
factor with more than two levels is not spherical. The data-driven approach of MVM for estimating Σ is more
adaptive to allow for any correlation pattern, but pays the price in statistical power when sphericity violation is
negligible or moderate; the power loss is reflected in the reduction of denominator degrees of freedom for the F -
statistic (cf., the corresponding UVT F -statistic). On the other hand, MVT-WS is preferred when the violation
is severe. In contrast, UVT makes a parsimonious assumption about spherical structure Σ, and produces the
same results as the univariate GLM. However, UVT under the MVM platform excels in two aspects relative
to the univariate GLM. First, sphericity testing is available, and the violation, if significant, can be corrected
through adjustment in the degrees of freedom. Secondly, incorporating a quantitative explanatory variable in
the presence of a within-subject factor is available under MVM but not under the univariate GLM.

In future work, we plan to extend the MVM framework to two situations. First, when the BOLD response
shape is captured through multiple basis functions, MVM offers further detection power than what has been
demonstrated here in the real data application. The second scenario is that multiple response variables in
different modalities (or units) can be readily analyzed in the traditional MVT fashion. For example, connectivity
measures of resting state at various seed regions are truly simultaneous response variables and can be formulated
in an MVM system to test the centroid. Similarly, a correlation (or connectivity) measure under resting state,
fractional anisotropy on the white matter tract, gray matter volume, and task-related BOLD response from
MRI data would constitute a four-variate model.

Comparisons with other implementations in neuroimaging

For within-subject experiment designs, there are three modeling approaches: UVM, MVM, and linear mixed-
effects modeling (LME). Theoretically, LME (e.g., as implemented in the AFNI program 3dLME) is considered
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the most inclusive platform, and UVM naturally generalizes to LME that is advantageous under several circum-
stances (Chen et al., 2013; Bernal-Rusiel et al., 2012), including missing data, modeling quantitative covariates
that vary within-subject (e.g., RT measures under positive, negative and neutral conditions), and data with
genetic information. However, the LME framework becomes lackluster in practice especially when dealing with
conventional AN(C)OVAs for two reasons. First, its flexibility to model the variance-covariance structure excels
in model building and comparison, but becomes impractical in the situation of massively univariate modeling.
In addition, the difficulty in assigning degrees of freedom leads to its heavy reliance on asymptotic proper-
ties. When the sample size is not large enough, it is unrealistic to adopt numerical approximations such as
bootstrapping and Markov chain Monte Carlo (MCMC) simulation sampling for neuroimaging data analysis.

The Matlab package GLM Flex, FSL (GLM in FEAT) and SPM (Full and Flexible Factorial Design) all
provide the univariate GLM methodology. Among them, GLM Flex is the closest in capability to 3dMVM with
the following differences: a) 3dMVM can model quantitative covariates in the presence of within-subject factors;
b) Symbolic representation for factor levels provides a more user-friendly interface for both input and output;
c) 3dMVM provides voxel-wise sphericity correction instead of assuming one variance-covariance structure over
the whole brain; d) No upper bound exists in 3dMVM upon the number of explanatory variables, provided that
the sample size is appropriate (e.g., at least five observations per variable). While multiple estimates of an
effect from runs or sessions can be directly fed into 3dMVM as input, the user has to summarize them first in
other packages (e.g., second level fixed-effects analysis in FEAT of FSL) before running the group analysis,
otherwise the results might be invalid. By way of illustration, neither FSL nor SPM can analyze the dataset
presented in the Applications and results section. In addition, their implementations are problematic when a
within-subject factor is involved in a data structure with two or more factors due to the undifferentiated pairing
for the F -statistic denominator that can lead to higher FPR than intended. Specifically, the SS for errors is
adopted for all the omnibus F -statistic formulation, thus only the F -statistics for the effects associated with
the highest order interaction among the within-subject factors are appropriately constructed. For instance, in
the presence of a within-subject factor, inferences regarding a between-subjects factor are invalid (McLaren et
al., 2011); similarly, a two-way within-subject ANOVA, when analyzed in SPM or FSL, would lead to inflated
significance for the main effects of both factors. In addition, testing for most post hoc hypotheses under the
SPM and FSL implementations is equally problematic. More specifically, if a post hoc hypothesis does not
involve the highest order interaction among the within-subject factors, the test would be invalid for the same
reason as the omnibus F -tests. However, even for a post hoc hypothesis associated with the highest order
interaction among the within-subject factors, the test would still be inappropriate if the weights do not sum to
zero (e.g., the positive condition in the control group in a two-way mixed ANOVA).

Furthermore, perfect sphericity is assumed in FSL, while SPM and GLM Flex presume a uniform variance-
covariance structure in the “activated” regions, which is estimated through pooling, similar to the strategy
adopted in the SPM individual subject analysis with the presumption of same temporal correlation across the
brain for the residual time series (Glaser and Friston, 2007). First, the spatial homogeneity presumption is
unrelated to the formulation of F -statistics in UVT (McLaren et al. 2011). Even if the whole brain shares
the same correlation structure, the denominator for the F -statistic of a between-subjects factor, as well as the
degrees of freedom, should still be properly specified, as shown in Appendix A. Additionally, the power (or
sensitivity) consideration in statistic selection should be based on a solid ground, not at the sacrifice of proper
FPR controllability. Furthermore, if the sphericity violation is spatially homogeneous in the brain, this pooling
method offers an economical approach. However, our empirical data suggested that such a presumption does
not hold well (Figure 4): substantial variability in sphericity violation exists within and across regions. If this
violation in a region happens to be around the global average, the correction method may work reasonably
well for that region. However, a cluster whose violation severity is much higher (mostly the warm colors in
Figure 4B-D and the scatterplot in Figure 5) would suffer from an unnecessary penalty in power. On the other
hand, those regions with much milder violation (mostly the blue voxels in Figure 4B-D and the scatterplot in
Figure 5) would be unjustifiably rendered with inflated significance. The voxels selected in SPM and GLM Flex
for spatially averaging of the variance-covariance structure are only limited to those whose significance reaches
a threshold (e.g., 0.001), but the estimated variance-covariance structure is then applied to all the data, causing
further biases across the whole brain. The biased statistical significance introduced by this procedure may
impact the characteristics of clusters (e.g. peak, shape and size) as well as their survival for multiple testing
correction - without extensive testing (beyond the scope of this paper) it is impossible to judge the import
of this effect. Lastly, the smoothing process of the variance-covariance structure among the selected voxels is
typically not accounted for in the FWE correction.

Our simulation results showed that the MVM approach is robust at the voxel level in terms of FPR control
and power achievement, and the spatial extent of noise can be reasonably handled through the FWE correction.
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In the majority of FMRI packages, spatial smoothing during preprocessing is used to improve the signal-to-noise
ratio, and the smoothness of the noise is taken into account in the FWE correction. Furthermore, paired t-tests
(a special one-way within-subject ANOVA with a 2 × 2 variance-covariance matrix) are performed voxel-wise
without taking into account the spatial structure in the brain among all packages. One may argue that the
amount of noise embedded in the FMRI data justifies the pooling process under the presumption of uniform
correlation structure across the brain. As the correlation structure demonstrates the extent of synchronization
across the factor levels (e.g., a subject who responds stronger to the positive condition relative to the group
average may also have a higher response to the negative and neutral conditions), the uniformity presumption
boils down to the following question: is the synchronization the same across the whole brain? Even though
our evidence of nonuniform correlation (Figure 5) could be discounted by the fact that FMRI data are noisy,
and it may well be nearly impossible to resolve with full certainty regarding the uniformity presumption in the
absence of a gold standard with real data (How to measure the robustness? Are more identified blobs better or
worse?), there is no compelling evidence to suggest the validity of the presumption. A large gap exists between
the presumption and the fact that FMRI data are noisy: noisy data do not translate to a uniform correlation
structure. We believe that the principle of parsimony (Occam’s razor) favors a method with less stringent
assumptions. In light of these considerations, just as the voxel-wise estimates for the temporal correlation at
the individual level are more realistic for the residual time series than a presumed uniformity, we argue that
the voxel-wise sphericity correction for UVT stands on firmer ground than one with a stronger presumption
that is difficult to validate with real or simulated data (What spatial distribution should one assume about the
correlation structure in simulations?). The associated computational cost is well worth it, to ensure reasonably
accurate statistical inferences.

Current limitations of MVM

3dMVM is computationally inefficient compared to the SS method; most analyses take half an hour or more.
In addition, there are other limitations. a) With the parsimonious assumption of sphericity, the univariate
GLM pays a low price in degrees of freedom through pooling the variances across the levels of a within-subject
factor. In contrast, those levels are treated as separate response variables under MVM with the requirement (2)
dictating that the total number of subjects be at least greater than or equal to the total number of simultaneous
and explanatory variables. For example, suppose that the BOLD response for each of three emotion conditions
is modeled by 8 basis functions. With one group of subjects, the MVM platform needs at least 3× 8 + 1 = 25
subjects. Such a stringent requirement is not needed in the univariate GLM. b) Within-subject quantitative
covariates cannot be modeled in 3dMVM. For example, suppose that one considers the average RT under each of
the three emotion conditions as an explanatory variable at the group level. Such a scenario would have to be
handled through LME (Chen et al., 2013). c) Even though unequal numbers of subjects are not an issue under
MVM, a subject with missing data would have to be abandoned in the analysis. For example, if one subject
performed positive and neutral, but not negative, tasks, the subject’s available data could not be utilized with
MVM but can be used with LME (Chen et al., 2013) or through data imputation. d) 3dMVM cannot handle
LME models with sophisticated hierarchical data structures such as subjects of monozygotic or dizygotic twins,
siblings, or parents from multiple families (Chen et al., 2013).

What if a cluster fails to survive rigorous corrections?

There are strong indications that a large portion of activations are likely unidentified at the individual
subject level due to the lack of power (Gonzalez-Castillo et al., 2012). The detection failure (false negative
rate) at the group level would probably be equally high, if not higher. Even though most scientific investigations
place a heavily-lopsided emphasis on the FPR controllability, the sensitivity or power is the primary focus under
some circumstances, such as pre-surgical detection where the efficiency is usually less than 10% (Button et al.,
2013). Several possibilities may lead to a cluster not achieving the desired significance at the group level under
a rigorous procedure: a) To reach a specific power level, a huge number of subjects are usually required, which
most studies lack due to financial and/or time costs; b) Spatial alignment is composed of multiple steps including
cross-TR, cross-session, cross-modality and cross-subject components, increasing the chance of misalignment.
Suboptimal or even erroneous alignment procedure surely would have a big impact on the power performance at
the group level; c) Variations in response magnitude or signal-to-noise ratio across regions as well as variations
in spatial extent (region size) may lead to different efficiency in activation detection across regions. Compared to
their larger counterparts, intrinsically small response magnitudes or small regions (e.g., the amygdala) require
a higher significance level to survive for multiple testing correction, which may not be always tenable. The
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small volume correction (SVC) method is not always a legitimate solution, especially when other regions are of
interest at the same time. d) If a two-tailed test, when appropriate, is strictly performed instead of two one-
tailed tests1, or if the corrections for both multiple testings of the same hypothesis and multiple comparisons
of different hypotheses are rigorously executed at the same time, many studies would face the power deficiency
issue.

Similarly, a region without sphericity correction (e.g., the cluster at the left inferior parietal lobule of
Figure 4D and UVT-UC in Figure 3A) may survive the FWE correction while those tests under sphericity
correction (UVT-SC, HT, and MVT-WS in Figure 3A) may fail. In other words, the investigator could face
a difficult situation between two choices: a statistically rigorous approach leads to results that fail to reach
the cluster-level significance, and another approach with invalid presumption (uniform or perfect sphericity)
renders easy result reporting. We recommend that the investigator perform the appropriate and rigorous
correction, and in the meantime consider the less rigorous results. If clusters that do not survive rigorous
corrections do agree with prior evidence (particularly from other modalities) or have substantial effect sizes
(e.g., in percent signal change), then the results can be reported with the caveat that they would not survive
the proper correction. Such results are still of suggestive value and provide a benchmark for future confirmation.
In contrast to the omnipresence, over-obsession and distorted impression of lopsided focus on statistic values
only (e.g., color-coded blobs of t-values) in the field, the response magnitude should be presented, providing a
solid ground for cross-region comparisons, cross-examinations, replicability, power analysis, and meta analysis
across studies (Sullivan and Feinn, 2012). Our suggestion of reporting effect magnitudes is aligned with and
complementary to a recent proposal to avoid the misinterpretations of significance maps (Engel and Burton,
2013). For example, as manifested in Figure 3B, Voxel 5 in the left inferior parietal lobule of Figure 4D and
Figure 3A was statistically significant only under UVT-UC at a p-value of 0.0036, marginally significant under
UVT-SC (p = 0.057), and not significant under MVT-WS (p = 0.40). The cluster where Voxel 5 resided had
a spatial extent of 155 voxels (6646 mm3) at the voxel-wise significance level of 0.05, and it would not survive
an FWE correction at the whole brain level based on Monte Carlo simulations, which requires a minimum
cluster size of 247 voxels (10590 mm3) with an FWHM of 10 mm. One could easily dismiss the reliability of the
cluster purely based on the stringent statistical thresholding as well as the fact that sphericity correction was
not performed. However, if one examines the substantial effect magnitude and the similar profiles and patterns
with other regions (Figure 3C), it is hard to fully deny the suggestive value of reporting the cluster together
with its effect sizes and profiles.

Conclusion

The MVM scheme provides a unified and inclusive platform that enables us to offer a comprehensive alter-
native to univariate GLM typically encountered in neuroimaging group analysis with four tests: within-subject
multivariate testing, univariate testing with and without sphericity correction, and hybrid testing. Our imple-
mentation of MVM provides a unique program 3dMVM with modeling capabilities beyond the current packages.
Its interface is easy-to-use, and allows the user to specify models, data structure and post hoc hypotheses
through symbolic representations. In addition to handling the traditional univariate GLM, it can analyze the
situations where there are a large number of explanatory variables or when a quantitative covariate is in-
volved in the presence of one or more within-subject factors. As the severity of sphericity violation is usually
inhomogeneous across the brain, 3dMVM offers a rigorous correction method at the voxel level.
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Appendix A. UVM approach to AN(C)OVA through GLM

The univariate modeling (UVM) approach for AN(C)OVA or GLM involves one response variable, which is
the brain response magnitude in the context of neuroimaging data analysis. Suppose that one is interested in
teasing apart the effects on the BOLD response among q quantitative covariates, one between-subjects factor
A, and one within-subject factor B. The relevant effects can be formulated as a cell means model,

βi(j)k =

q∑
h=1

αhxi(j)h + α
(A)
j + α

(B)
k + α

(AB)
jk + bi(j) + δi(j)k, (6)

where βi(j)k is the ith subject’s effect estimate (e.g., BOLD response) at the j th level (group) of factor A and
kth level of factor B, xi(j)h and αh are the ith subject’s value of the hth explanatory variable and its associated
group effect, α(A)

j , α(B)
k , and α(AB)

jk are respectively the fixed effect at the j th level of factor A, the fixed effect
at the kth level of factor B, and their interaction effect, bi(j) is a random effect term, indicating the deviation
of the ith subject at the j th level of factor A from all the fixed effects, and δi(j)k represents the random error
associated with the ith subject at the j th level of factor A and the kth level of factor B. The index notation
i(j) emphasizes that each subject is nested within a specific group. For simplicity, we assume a balanced design
with equal number of subjects across groups. i = 1, 2, ..., n; j = 1, 2, ..., a; k = 1, 2, ..., b.

Subjects in the model (6) are sometimes considered the levels of a random factor S. There are no random
effects associated with those between-subjects variables (factors or quantitative measures) because each subject
takes only one value for each such explanatory variable. In contrast, each subject is measured as many times as
the number of levels for each within-subject factor; therefore, the random term, bi(j), indicates the deviation of
the ith subject from the respective fixed effects,

∑q
h=1 αhxi(j)h, α

(A)
j , and α(AB)

k . It is noteworthy that no direct

random effect is included for α(B)
k because such an interaction effect between factor B and subjects S cannot

be differentiated from the residual term δi(j)k, unless there are multiple measures from each combination.
Without the presence of quantitative covariates (q = 1 and xi(j)1 = 1), the model (6) is traditionally called

a mixed factorial two-way ANOVA. To obtain the F -statistic for each fixed effect in the ANOVA framework,
one pairs an appropriate variance source as numerator with another as denominator. Each variance source can
be explicitly expressed as the mean squares (MS), which is the sum of squares (SS) for the errors associated
with each fixed effect, adjusted by their respective degrees of freedom. More specifically, the F -statistics for
main effects of factors A and B and their interaction in a mixed factorial two-way ANOVA ((6) with q = 1)
can be constructed as (Neter et al., 1996)

Fa−1,a(n−1)(A) =
MSA
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,

Fb−1,a(b−1)(n−1)(B) =
MSB
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,
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MSAB

MSBS(A)
,

(7)
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(8)

In the absence of multiple measures from each combination, MSBS(A) is the same as MSE, the mean squares
of the errors. The nice feature about the explicit expression of the MS terms is that they can be numerically
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hard-coded into a program through the summation of data and their squares respectively, leading to highly
efficient computations involving only simple and direct SS terms. This scheme has been adopted into the
programs 3dANOVA, 3dANOVA2, 3dANOVA3, and GroupAna in AFNI, and their runtime for FMRI group analysis
is typically in seconds. For example, a mixed factorial two-way ANOVA can be analyzed with 3dANOVA3 -type
5.

However, the limitations for the direct computation of SS terms are quite obvious. This calculation requires
a rigid data structure, and cannot deal with an unbalanced design (unequal numbers of subjects across groups)
or missing data. Any quantitative covariates cannot be analyzed under the framework either. The number of
factors that can be incorporated in the model is programatically limited. To expand the applicability of the
ANOVA platform, one can transform the cell means model (6) into a regression counterpart in which an effect
(fixed or random) for a categorical variable is typically dummy coded in the model (or design) matrix. For
the convenience of interpretation, we choose effect coding (sum-to-zero or orthogonal contrast) in which the
reference (or base) level is set to -1 so that each level other than the reference takes 1 in its associated regressor
and 0 otherwise. The intercept α1 is associated with xi(j)1 = 1; when a quantitative covariate is present, α1

illustrates the effect associated with the center value of the variable. Furthermore, α1 can be interpreted as the
average effect across the factor levels including subjects. Each other regression coefficient, α(A)

j or bi(j), reveals
the corresponding effect relative to the group average, thus effect coding is also called deviation coding. For
example, the ANCOVA model (6) can be represented and extended to a GLM or Gauss-Markov setup,

b = Xa+ d, (9)

where b is the stacking of all the response variable values. X is assumed of full column rank, and its columns
are associated with two categories. First, they include the regressors for the fixed effects. For example, the
ANCOVA model (6) can be expressed in (9) with the fixed-effects columns inX coded by intercept (xi(j)1 = 1),
quantitative covariates xi(j)h (h = 2, 3, ...q), m− 1 columns for the M groups (levels of factor A), l− 1 columns
for the l levels of within-subject factor B, (m − 1)(l − 1) columns for the interaction between factors A and
B. Secondly, they may contain the regressors for the random effects: each group is represented through effect
coding with as many as the number of subjects in that group minus 1. d is the stacking of error terms that are
confounded with the random effects of interaction between factor B and subjects. Another natural extension
is that the GLM formulation (9) can be expressed as a special case of LME model (Chen et al., 2013).

Instead of direct computations in the cell means model (6), each SS term can be obtained by solving the
full GLM (9) through ordinary least squares (OLS) against the respective reduced model. Specifically, the SS
term for the errors for the full GLM (9) is expressed as

SSE = bT (In − P )b (10)

where P = X(XTX)−1XT is the orthogonal projection matrix of b onto the space spanned by the columns
of X, and In is an identity matrix of size n×n. SSE in (10) characterizes the data variability in the L2-space
that cannot be accounted for by the explanatory variables (or the columns of X) in the full model. When the
columns associated with a specific effect (e.g., factor A) are removed fromX, the resultant SSE for the reduced
(or restricted) model would be higher than the one from the full model, and the incremental (or marginal) SSE
captures the contribution in SS attributable to the corresponding effect (e.g., factor A). That is, each of the SS
terms (e.g., SSA, SSB, SSAB, and SSS(A)) can be computed using (10) but with the coding columns (e.g.,
for A,B,AB, and S respectively) removed from X and then subtracting the SSE for the full model. Such
computations in (10) are apparently not as efficient as the direct formulas ((8) in Appendix A), and thus the
GLM runtime is usually in the order of minutes or longer. However, one advantage of GLM over the direct
SS computations is the availability of modeling unbalanced designs. It is of note that, with equal numbers
of subjects across groups and with no missing data, model regressors are orthogonal, and the additivity of
the SS terms (8) holds for the model (6); that is, the total SS equals the sum of all individual SS terms.
Equivalently, the additivity is translated to the orthogonality of the regressors in the GLM (9). An unbalanced
data structure (as is the case with missing data) leads to the loss of orthogonality, and the additivity of the SS
terms is broken, leading to the sensitivity of the SS terms and thus the F -statistics to the variable orders in the
model. This is the source of diverse and controversial adoption of the various schemes: sequential, hierarchical
or partially sequential, and marginal SS computations, also known as types I, II, and III respectively. A second
advantage is that quantitative covariates can be modeled in the absence of within-subject factors under the
GLM framework, and (9) reduces to multiple regression or ANCOVA. Within the AFNI package, this is the
approach adopted in programs such as 3dttest++ and 3dRegAna. The third advantage of GLM is the flexible
choice of explanatory variables and their interactions. For example, if the highest order interaction in the model
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is deemed nonexistent, it can be removed from the model. The downside of the flexibility is that, similar to
the situation of unbalanced design, it leads to the loss of additivity and orthogonality of the SS terms. In
contrast, ANOVA is rigid in the sense that all main effects and interactions have to be included in the model
and computation even if some effects are deemed not present.

For a two-way mixed factorial ANOVA without multiple measures (cf. (6) with q = 1 and xi(j)1 = 1), the
denominator for the F -statistics of B and AB is the mean squares of errors (MSE), which can be directly
computed as in (10). However, the proper denominator for the F -statistic of the between-subjects factor A
is not MSE but MSS(A). Mistakenly using MSE instead of MSS(A) as the denominator creates inflated
significance for factor A as clearly demonstrated by McLaren et al. (2011). Such an artificial inflation also occurs
when making a post hoc inference for the effect of a specific factor level or the linear combination of multiple
levels when their weights do not add up to zero. As the number of within-subject factors increases, each extra
factor requires a separate model with unique random effects and separate variance partitioning. Consequentially
the pairing for the denominators of F -statistics becomes numerically tedious and even unwieldy for both the
direct SS computations and the GLM scheme. It is this challenge that leads to the upper bound of four within-
subject factors in the AFNI ANOVA suite. For GLM implementations, only the Matlab package GLM Flex
allows for more than one within-subject factor with the capability of modeling up to five fixed-effects variables,
and properly handles omnibus testing for between-subjects factors as well as post hoc inferences.

As the complexities of FMRI experiment design and the resultant group analysis deepen, the limitation
on the number of variables will become paramount. Another challenge under the UVM platform (both direct
SS computations and GLM) is that quantitative covariates cannot be directly modeled in the presence of a
within-subject factor. Furthermore, whenever there are more than two levels for a within-subject factor, the
F -statistics for the main and interaction effects are by default constructed under the sphericity assumption for
the variance-covariance matrix and thus inflated when the assumption is severely violated. No correction is
currently provided in the AFNI ANOVA suite or in FSL. SPM and GLM Flex deal with the issue by estimating
the variance-covariance matrix under the assumption that all “activated” voxels and regions (e.g., under the
voxel-wise significance of 0.001) share the same correlation structure. Such an assumption would only hold if
no heterogeneity exists across voxels and regions, and may become questionable in reality. These limitations
are some of the motivations that lead to our exploration of the MVM approach for FMRI group analysis.

Appendix B. MVM under a constraint and the associated testing statistics

Just as in univariate GLM, the least squares estimates (LSE) for A and E in the MVM system (1) are
(Rencher and Christensen, 2012)

Â = (XTX)−1XTB,

Σ̂ =
1

n− q
(B −XÂ)T (B −XÂ) =

1

n− q
(BTB − ÂT

XTB) =
Q

n− q
,

(11)

where the quadratic form Q = BT (I − P )B = BT (I − X(XTX)−1XT )B = BTB − ÂT
XTB is the

counterpart of residual sum of squares (RSS) in UVM, and also paralleling is that P = X(XTX)−1XT is the
orthogonal projection matrix that is symmetric and idempotent. In other words, P projects Rn onto the space
spanned by the columns of the design matrix X: PB = XÂ, and P (I − P ) = 0.

To solve the MVM (1) under the constraint (3), we adopt a two-step procedure, which also demonstrates
intuitively the transformation role of R in (3). First, we consider transforming the response data B in the
original MVM system (1) through BR = BR, and solve a new MVM framework,

BR = XAR +ER. (12)

The resultant LSE solutions are

ÂR = (XTX)−1XTBR = ÂR,

Σ̂R =
1

n− q
(BR

TBR − ÂR
T
XTBR) =

1

n− q
RT (BTB − ÂT

XTB)R = RT Σ̂R.
(13)

The original GLT (3) now serves as a constraint or general linear hypothesis,

LAR = 0, (14)
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for the new MVM (12). Following the same algebraic operations as in univariate GLM (Seber, 2008), we obtain
the LSE solutions for the MVM system (12) under the constraint (14),

Â
∗

= ÂR − (XTX)−1LT (L(XTX)−1LT )LÂR,

Σ̂
∗

= Σ̂R +
1

u
(LÂR)T (L(XTX)−1LT )−1LÂR.

(15)

It can be further shown (Seber, 1984) that, under the hypothesis (3), the SSP matrices for the hypothesis
and errors are respectively

H = (LÂR)T (L(XTX)−1LT )−1(LÂR) ∼Wv(u,RTΣR),

E = RT (BTB − ÂT
XTB)R = (n− q)RT Σ̂R ∼Wv(n− q,RTΣR),

where Wv(k,∆) denotes a v-dimensional Wishart distribution with k degrees of freedom and parameter matrix
∆, a generalized version of χ2 (or more generally Γ) distribution. The diagonals of H and E are the SS terms
for the hypothesis and errors respectively for the traditional univariate tests. An intuitive connection here based
on the transformed system (12) is that H corresponds to the incremental variance-covariance matrix in (15)
relative to (13) while E is associated with Σ̂R in (13).

Four versions of testing statistics (Rencher and Christensen, 2012) are typically adopted for the hypothesis
(3) through the eigenvalues λ1, λ2, ..., λr of HE−1,

det(E)

det(H +E)
=

r∏
l=1

1

1 + λl
, Wilks’ λ,

tr(H(H +E)−1) =

r∑
l=1

λl
1 + λl

, Pillai-Bartlett trace,

tr(HE−1) =

r∑
l=1

λl, Lawley-Hotelling trace,

r
max
l=1

λl, Roy’s largest root,

where det and tr are the determinant and trace functions that summarize the sum of squares and the shared
variances among the response variables into a scalar, often referred to as generalized sample variance. The
Lawley-Hotelling trace can be viewed as the L1-norm of the eigenvalue vector or generalized entropy index
GE(1). Roy’s largest root is the L∞-norm of the eigenvalue vector, GE(∞), the spectral or L2-norm ‖HE−1 ‖2.
Wilks’ λ is GE(−1) on (1 + λ1, 1 + λ2, ..., 1 + λr) up to a monotone transformation each.

The four multivariate testing statistics are exact tests, but are not equivalent with each other in general.
However, when only two groups of subjects are involved, there is only one eigenvalue, so they become equivalent
and reduce to Hotelling’s T 2. For easier thresholding of significance testing, they can be approximated by F -
statistic. As indicators of relationship between explanatory and response variables, they differ slightly in
their approaches to aggregating the variabilities across the response variables accounted for by the explanatory
variables or under (3). Roy’s largest root, as the union-interaction principle test, only considers the largest effect
on the response variables (or largest loading on the associated eigenvector). The other three are compound tests
that involve all the response variables. Equivalent to the likelihood ratio test, Wilks’s λ is the most intuitively
interpretable with a range between 0 and 1. For example, a small Wilks’s λ indicates greater accountability.
Specifically, 0 (or 1) means a perfect (or no) relationship between the explanatory and the response variables.
And 1 minus Wilks’s λ is the multivariate counterpart of coefficient of determination R2 in univariate GLM,
showing the proportion of data variability in the response variables that is accounted for by the explanatory
variables. The Pillai-Bartlett trace sums over the variances that can be explained by the discriminant variables
(or the greatest separation of the explanatory variables), and is considered the most reliable among the four
and provides the best protection against false positives when the sample size is relatively small. The Lawley-
Hotelling trace represents the most significant linear combination of the response variables. When the sample
is reasonably large, the latter three MVT statistics render similar results.

When R = I, the general linear hypothesis (3) corresponds to the conventional multivariate testing. In
addition, the eigenvectors associated with λ1, λ2, ..., λr are orthogonal with each other, and are the linear com-
binations of the response variables. Each eigenvalue indicates the amount of variability that can be accounted
for by the associated eigenvector.
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Appendix C. Examples of formulating GLT matrices

We start with two special scenarios that are the multivariate versions of one- and two-sample t-tests. In the
first case of multivariate one-sample test, each subject is measured in Rm, X = 1n×1, and A is of size 1×m.
An m-variate analog of univariate one-sample hypothesis can be expressed under (3) as,

H0 : α1 = 0, α2 = 0, ..., αm = 0, (16a)
L1 = 1,R1 = Im. (16b)

This is a one-sample Hotelling’s T 2-test, the multivariate analog of the univariate one-sample t-test. The null
hypothesis (16a) states that the group centroid is at the origin of Rm. In the multivariate two-sample case, X
and A are of size n× 2 and 2×m respectively. With effect coding, the hypothesis for group comparison in Rm

and its testing formulation under (3) are respectively,

H0 : α11 = α21, α12 = α22, ..., α1m = α2m, (17a)
L2 = (0, 1),R2 = Im. (17b)

The hypothesis (17a) compares the centroid in Rm between the groups, and its associated test is a two-sample
Hotelling’s T 2, the multivariate analog of the univariate two sample t-test. One may also perform testing for
each group’s effect with respectively

L3 = (1, 1),R3 = Im,

L4 = (1,−1),R4 = Im.

Parallel to (16a) is the factor main effect in a one-way within-subject ANOVA that can be formulated with
the following hypothesis,

H0 : α1 = α2 = ... = αm, (18a)

L5 = 1,R5 =

[
Im−1

−11×(m−1)

]
. (18b)

Notice that the response transformation matrix R5 is essentially the effect coding matrix for the within-
subject factor under UVM with the last level as the reference or base. This representation also embodies
the transformation from the centroid hypothesis (16a) to the main effect hypothesis (18a). Alternatively the
namesake for R5 has another perspective: (18a) can be formulated by transforming the original m response
variables tom−1 variables with each of the firstm−1 response variables subtracting them-th variable. In other
words, after the transformation, (18a) under the new MVMwithm−1 response variables becomes a conventional
multivariate hypothesis with R = Im−1 for an Rm−1 centroid: (α1 −αm, α2 −αm, ..., αm−1 −αm) = 01×(m−1).

For a two-way between-subjects ANOVA, the response transformation matrix is a scalar, R = 1, and the
multivariate model reduces to a UVM system. On the other hand, the hypothesis of interest parallel to (17a)
is the interaction between the factor and the two groups in the mixed factorial two-way ANOVA,

H0 : α11 − α21 = α12 − α22 = ... = α1m − α2m,

L6 = (0, 1),R6 = R5.

We can similarly formulate the main effect hypothesis for the within-subject factor (H0 : α·1 = α·2 = . . . = α·m)
and for the groups (H0 : α1· = α2·) through L = (1, 0),R = R5 and L = (0, 1),R = 1m×1 respectively. The
center dot (·) here in the effect parameter index notations indicates the averaging or collapsing among the levels
of the corresponding factor. More generally, for a mixed factorial two-way ANOVA (model (1) with q = 1) with
between-subjects factor A of a levels and within-subject factor B of b levels, the main effects for factors A and
B and their interaction A:B can be tested under MVM through (3) with the following

LA =
[

0(a−1)×1 I(a−1)×(a−1)
]
,RA = 1(b−1)×1,

LB =
[

1 01×(a−1)
]
,RB = R(B),

LA:B = LA,RA:B = R(B),

where R(B) =

[
Ib−1

−11×(b−1)

]
is the effect coding matrix for factor B. And the F -statistics from the above

GLTs are equivalent to (7) if the data structure is balanced.
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For a factorial two-way within-subject ANOVA with factors A and B of a and b levels respectively, one can
similarly analyze the data under the hypothesis (3) with the following,

LA = 1,RA = R(A) ⊗ 1(b−1)×1,

LB = 1,RB = 1(a−1)×1 ⊗R(B),

LA:B = 1,RA:B = R(A) ⊗R(B),

whereR(A) =

[
Ia−1

−11×(a−1)

]
andRA:B = R(A)⊗R(B) are the effect coding matrices for factor A and interaction

A : B respectively.

Appendix D. The Mauchly test and sphericity corrections

The Mauchly test for sphericity verifies whether Σ in the MVM system (1) is proportional to identity matrix,
and can be performed through (Timm, 2002)

W =
det(Ẽ)

[tr(Ẽ)/v]v
,

where Ẽ = R̃
T
ER̃, R̃ is an orthogonormal matrix whose columns are normalized orthogonal columns of the

response transformation matrix R in the hypothesis formulation (3), E is the SSP matrix for the errors, and
v is the number of columns in R. W is close to 1 if Ẽ is approximately a diagonal matrix, and −lnW can be
approximated by χ2-distribution with a scaling factor. Furthermore, the Greenhouse-Geisser and Huynh-Feldt
measures of sphericity can be computed as well under UVM (Keselman et al., 2001),

εGG =
tr2(Ẽ)

vtr(Ẽ
T
Ẽ)

,

εHF = min(
v(n− q + 1)εGG − 2

v(n− q)− v2εGG
, 1),

where 1/v ≤ εGG ≤ εHF ≤ 1 and perfect sphericity corresponds to the upper bound εGG = εHF = 1 and
the lower bound instantiates the case when there is one dominating eigenvalue (thus the data can be approx-
imated in one-dimension). The correction for sphericity violation can be performed through multiplying both
the numerator and denominator degrees of freedom in the original F -statistic by either εGG or εHF . The
Greenhouse-Geisser measure tends to be over-conservative when the violation is not severe while the Huynh-
Feldt modification is too liberal when sphericity is significantly violated.

Appendix E. Interface for running 3dMVM

Program 3dMVM is run, for example, on a tcsh terminal with a command script as the following. As in the
notional convention in R, the operator ∗ between the variables a and b means a ∗ b = a+ b+ a : b, while + and
: represent addition and interaction among the variables. As in most AFNI programs, the specific usage and
the options can be found in command 3dMVM -help at the terminal.

3dMVM -prefix OutputFile -jobs 8 \
-bsVars ’Group*Age’ -wsVars ’Cond*Component’ \
-qVars ’Age’ -SC -MV -num_glt 40 \
· · ·
-dataTabel \

Subj Group Age Cond Component InputFile \
S1 Child 2.3 Con tent1 S1_Con_t1+tlrc \
S1 Child 2.3 Con tent2 S1_Con_t2+tlrc \
· · ·
S1 Child 2.3 Con tent10 S1_Con_t10+tlrc \
· · ·
S50 Adult -1.9 Inc tent1 S50_Con_t1+tlrc \
S50 Adult -1.9 Inc tent2 S50_Con_t2+tlrc \
· · ·
S50 Adult -1.9 Inc tent10 S50_Con_t10+tlrc
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Appendix F. List of acronyms used in the paper

AN(C)OVA analysis of (co)variance
FPR false positive rate
FWE family-wise error
GLM general linear model
GLT general linear testing
HDR hemodynamic response
HT hybrid testing defined in (5)
LSE least squares estimate
MAN(C)OVA multivariate analysis of (co)variance
MLE linear mixed-effects modeling
MSE mean squares of errors
MVM multivariate modeling
MVT multivariate testing
MVT-WS multivariate testing for a within-subject effect
SS sum of squares
SSP sum of squares and product
SSPE sum of squares and product for errors
SSPH sum of squares and product for the hypothesis
UVM univariate modeling
UVT univariate testing
UVT-SC univariate testing with sphericity correction
UVT-UC univariate testing with sphericity uncorrected
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